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Abstract

A method is proposed and studied whereby the
system identification cycle consisting of experiment
design and data analysis can be repeatedly
implemented aboard atest aircraft inreal time. This
adaptive in-flight system identification scheme has
many advantages, including increased flight test
efficiency, adaptability to dynamic characteristics that
areimperfectly known a priori, in-flight improvement
of data quality through iterative input design, and
immediate feedback of the quality of flight test results.
The technique uses equation error in the frequency
domain with arecursive Fourier transform for the real
time data analysis, and ssimple design methods
employing square wave input forms to design the test
inputsin flight. Simulation examples are used to
demonstrate that the technique produces increasingly
accurate model parameter estimates resulting from
sequentially designed and implemented flight test
maneuvers. The method has reasonable computational
requirements, and could be implemented aboard an
aircraft inreal time.

Nomenclature

a,,a,a, bodyaxistransational accelerations, g
E{ O expectation operator

A,B,C,D linear system matrices

g acceleration due to gravity, ft/sec?

h atitude, ft

J cost function

L aerodynamic lift force

M Mach number

N total number of sampletimes
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p,q,r body axes angular velocities, rad/sec
Re real part
R measurement noise covariance matrix
Tr trace
u control vector
airspeed, ft/sec
X State vector
Y, output vector at time i At
z; measured output vector at time i At
Z Z body axis aerodynamic force
0 zero vector
a angle of attack, rad
0ij Kronecker delta
At sampling interval, sec
w angular frequency, rad/sec
6 p-dimensional parameter vector
superscripts
T transpose
T complex conjugate transpose
b discrete Fourier transform
B estimate
-1 matrix inverse
subscripts
0 trim or initial value
w wind axes

Introduction

Flight testing to collect data for dynamic modeling
begins with some a priori information about the
aircraft dynamics. Thea priori information typicaly
consists of the rigid body equations of motion in
conjunction with aerodynamic and engine data from
ground tests. Flight test maneuvers are designed to
excite the dynamic response of the aircraft, based on
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thea priori information to produce data for dynamic
modeling. The maneuvers are then scheduled for
flight test, executed by either the pilot or an on-board
computer system in flight, and the data is recorded for
post-flight analysis. Because of differences between
flight test results and predictions based on ground
tests, the maneuver design based on a priori
information may turn out to be deficient in some way.
For example, if the input amplitudeistoo low, the data
will have low information content, which leads to
inaccurate model parameter estimates. A similar data
information deficiency can result if theinput
frequencies are poorly chosen. On the other hand, if
the input amplitude istoo high, the aircraft motion may
stray too far from the test condition or excite
nonlinearities, which can invalidate modeling
assumptions made for both the maneuver design and
the dataanalysis. Typically, these problems are
discovered during post-flight data analysis, resulting
in aneed for additional flight tests. Such additiona
experimentation requires more flight time, more
engineering time, and more money, which are seldom
readily available. A block diagram of the entire
process appears as Figure 1.

Oneiteration through the identification cycle
shown in Figure 1 can easily take months or even
yearsin practice. The main difficulty isthelargetime
delay that occurs due to the analysis and scheduling of
additional maneuvers, and the inevitable conflict of the
requirement for more flight time to collect dynamic
maodeling data with other objectives of the flight test
program.

Thiswork examines a different approach to
obtaining the requisite data for dynamic modeling
purposes. Figure2illustratestheidea. Anaysisis
now donein real time aboard the aircraft, so that
modeling results from an initial maneuver could be
used to design the subsequent test maneuver, and so
on throughout the flight test until acceptable results
(e.g., specific model parameter accuracies) are
achieved. Theresult isan adaptive experiment design
and data analysis method that is carried out in flight.
With this approach, the quality of modeling results
based on the measured flight data would be known
before the aircraft lands, and no further flights would
be required for this purpose. At the very least, the
procedure could provide ahigh level of confidence that
sufficient high quality datawas collected for the
modeling task, and could do so in oneflight. Flight
testing in thisway would therefore greatly increase
efficiency and effectiveness, since the complete
identification cycle would be carried out in flight in an
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automated fashion. In addition, detailed a priori
information would not be required to design the
maneuver in this case, since the maneuver design
starts by using avery simple low amplitude input, and
then evolves the input to more complex forms with
appropriate amplitudes based on analysis of datafrom
the preceding maneuvers.

There are many candidate methods for the
in-flight data analysis and maneuver design, but the
main requirement that they be simple enough to be
implemented in real time aboard the aircraft narrows
thefield. In particular, any methods that iterate
through the recorded data must be eliminated. One
possihility isto use an extended Kalman filter to
estimate the model parameters. This approach has
been described in the literaturel, along with several
specific applications to aircraft parameter estimation
problems?>. There are some problems with this
approach, however, some of which are related to the
fact that the constant model parameters are treated as
additional states, which can therefore vary with time.
In addition, numerical and convergence problems
related to the requisite linearization and noise variance
estimation can be encountered.

In this work, a simple recursive computation of
the Fourier transform is used to implement equation
error in the frequency domain for in-flight model
parameter estimation. The in-flight maneuver design
is done by creating simple square wave input forms
with progressively increasing complexity, based on
the latest results from the in-flight model parameter
estimation. Together, these techniques adaptively
carry out the complete system identification cyclein
flight, using ssimple methods that can be implemented
on modern flight computers.

The next section gives the problem statement and
outlines the necessary theory. Following this, the
in-flight system identification method is applied to a
simulation example, where alinear truth model is used
with outputs corrupted by noise similar to that
observed in flight. The application isidentifying an
accurate model for the rigid body short period
dynamics of aconventiona fighter. Finaly, a
nonlinear simulation is used to demonstrate the
in-flight system identification procedure.
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Theoretical Development

Airplane dynamics can be described by the
following linear model equations:

X(t) = Ax(t) + Bu(t) @
x(0) =%, @
y(t) = Cx(t) + Du(t) ©)
z=y+v, i=12...N (4

The discrete measurement noise vector v; is assumed
Gaussian with

E{v}=0 and E{ Vi va} =RJ;; (5)

Matrices A, B, C, and D in Egs. (1) and (3)
contain stability and control derivatives, which are the
constant model parameters to be estimated from flight
test data. Theinput quantities are control surface
deflections, with output quantities from air data
(V, a, B), body axisangular velocities ( p, g, 1),
Euler angles (@, 6, ¢ ), and translational accelerations
(ax, a,, eg). Longitudina and lateral cases can be

treated separately, with the linear model structure
shown above resulting from the usual small
perturbation assumptions®.

The linear model structure given here will be used
for thein-flight maneuver design and the in-flight data
analysis. Using the linear model structure keeps the
in-flight calculations simple, and is adequate for the
purpose at hand, which isto adaptively design flight
test maneuvers that produce good flight test data. If
necessary, more sophisticated modeling and data
analysis techniques can be applied to the measured
data post-flight.

Equation Error in the Frequency Domain
The finite Fourier transform of asignal x(t) is
defined by

X

(@)= IoT x(t)e 1t ©)
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which can be approximated by
N-1 ,
K(w)=aty x e 7)
i=0

Subscript i indicatesthe variable value at time i At,
and At isthe sampling interval. The summationin
Eq. (7) is defined as the discrete Fourier transform,

N-1
X(@)= Y x eIt ®
i=0
so that
X(w) = X(w)At 9)

Some fairly straightforward corrections’ can be
made to Eq. (9) to remove the inaccuracy resulting
from the fact that Eq. (9) isasimple Euler
approximation to the finite Fourier transform of
Eq. (6). If the sampling rate is much higher than the
frequencies of interest (w), then the corrections are
small and can be safely ignored.

Applying the Fourier transform to Egs. (1) and
(3) gives

jwX(w) = AX(w) + Bli(w) (10)

¥(w) = CX(w) + Di(w) (11)

When the states, outputs, and inputs are measured,
individua state or output equations from vector

Egs. (10) or (11) can be used in an equation error
formulation to estimate the stability and control
derivatives contained in matrices A, B, C,and D .
For the kth state equation of vector Eq. (10), the cost
functionis

1, ~ ~
J = > S ‘ jon & (w,) = AX(w,) - By u(con)‘2
n=1
(12)

where A and B, arethe kth rows of matrices A and
B, respectively, and %, (w, ) isthe kth element of
vector %(w, ). Thereare mtermsin the summation,

corresponding to m frequencies of interest, and each
transformed variable depends on frequency. Similar
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cost expressions can be written for individua output
equations from vector Eq. (11). Denoting the vector

of unknown model parametersin A, and B, by 6, the

problem can be formulated as a standard |east squares
regression problem with complex data,

Y. =X 0+ ¢, (13)

where
Ej ;% (@)
_ Ojw,% ()

C .

%(eom)

(14
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and ¢ represents the equation error in the frequency
domain. The least squares cost function is

3= % (Y = %:6)" (¥, - X.6) (16)

which isidentical to the cost in Eq. (12). The
parameter vector estimate that minimizes this cost
function is computed from8

E [ Re(X," xc)] T Re(XY,) 17)

The estimated parameter covariance matrix is
cou(6) = - 6)(5 - ) B o7 re(x,"x,)]
(18)

where the equation error variance g2 can be estimated
from the residuals,

4

L 5 .- X:0) (Yo - X 0) o)

~2 _
o (m

and p isthe number of elementsin parameter vector 6.

Recursive Fourier Transform

For a given frequency, the discrete Fourier
transformin Eq. (8) a sampletimei isrelated to the
discrete Fourier transform at time i —1 by

X (@) = X;_y(w) + x; e7IAt (20)
where
e iwidt = e—ijte—jw(i—l)At (21)

The quantity e @At jsconstant for agiven
frequency and constant sampling interval. It follows
that the discrete Fourier transform can be computed for
agiven frequency at each time step using one addition
in Eg. (20) and two multiplications—onein Eqg. (21)
using the stored constant e~ 1®At for frequency w, and
onein Eqg. (20). Thereisno need to storethetime
domain datain memory when computing the discrete
Fourier transform in this way, because each sampled
data point is processed immediately. Time domain
datafrom all preceding maneuvers can be used in each
subsequent analysis by ssmply continuing the
recursive calculation of the Fourier transform. More
data from more maneuvers improves the quality of the
data in the frequency domain without increasing
memory requirements to storeit. In addition, the
Fourier transform isavailable a any time i At. The
approximation to the finite Fourier transform is
completed using Eq. (9).

Rigid body dynamics of piloted aircraft liein the
rather narrow frequency band of 0-1 Hz. Itis
therefore possible to select closely spaced fixed
frequencies for the Fourier transform and the
subsequent data analysis. In thiswork, frequency
spacing of 0.02 Hz was found to be adequate, which
gives 50 frequencies evenly distributed on the interva
[0.02-1.0] Hz for each transformed time domain
signal. Zero frequency is excluded to remove trim
values and measurement biases. The number of time
domain signalsto be transformed is usually low (7 or
less—moreif there are many control surfaces), so that
this approach requires a small amount of computer
memory that is independent of the time length of the
flight test maneuvers.
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Test Maneuver Design

The specification of the flight test maneuvers
(equivalently, the flight test inputs) has amajor impact
on the quality of the measured data for modeling
purposes. Thegoal isto design an experiment which
produces data from which model parameters can be
accurately estimated. Thistrandates into exciting the
dynamic response modes such that the sensitivities of
the model outputs to the parameters are high and
correlations among the parameters are low. Designing
an experiment which meets these objectives requires
rich excitation of the system, which isfrequently at
odds with various practica constraints, such asthe
requirement that output amplitude excursions stay
within specified limitsin order to assure the validity of
an assumed model structure.

Previous work®10 has shown that inputs
optimized for parameter estimation experiments can be
effectively designed using the 2-optimality criterion,
wherein the input design cost J, equals the sum of
squares of estimated parameter variances.

3 =Tr %ﬁé—e)(é—e)T% 22)

The analytical connection between the input time
history and the achievable accuracy for the model
parameter estimates based on the measured datais
detailed in Ref. [9]. For the present purposes, it
suffices to say that the connection is strong, which
means that the input time history has a significant
impact on the accuracy of the parameter estimates
computed from measured data. The choice of input
implicitly includes the length of the maneuver.

Doublet, 2-1-1, and 3-2-1-1 input forms have the
advantages of easy implementation in flight and simple
design based on current estimates of modal
frequencies and steady state (dc) gain. Figures 3, 4,
and 5 illustrate each input form.

Flight test results from Ref. [9] demonstrated that
a low angle of attack, asimple 3-2-1-1 input formis
roughly 25% less effective than a globally optimal
sguare wave input which minimized the 2 -optimality
criterion given above.

The 3-2-1-1 has avery simple design procedure,
whichis:

1. Match the frequency of the 2 pulse to the current
estimate of the natural frequency for the
dominant oscillatory mode. Notethat asingle
pulse represents one-half the period.

5

2. Scdethe 3 and 1 pulse widthsin proportion to
the 2 pulse.

3. Set the amplitude of the pulses so that output
amplitudes do not exceed values that would
invalidate the assumed model structure using the
current model estimate. For linear dynamical
systems, thisis asimple scaling operation.

The design procedureis similar for the 2-1-1
input:

1. Select the pulse width so that the frequencies of
the 2 and 1 pulses bracket the frequency of the
current estimate of the natural frequency for the
dominant oscillatory mode. In the current work,
the 2 and 1 pulses were determined as 4/3 and
2/3 times the pulse width corresponding to the
current natural frequency estimate.

2. Set the amplitude of the pulses so that output
amplitudes do not exceed values that would
invalidate the assumed model structure using the
current model estimate. For linear dynamical
systems, thisis a simple scaling operation.

Doublet inputs are sometimes designed to match
the frequency of the current estimate of the natural
frequency for the dominant oscillatory mode, but are
also sometimes designed to have very thin pulse width
to approximate atwo-sided impulse, which
theoretically contains al frequencies.

There are other input forms and input design
methods!?, but square wave input forms have been
shown to be simple and effective®, so these input
forms were selected for the flight test input design.

The test maneuver sequence beginswith asimple
unit amplitude doublet with a one second pulse width,
which corresponds to afrequency of 0.5 Hz. After
executing thisinitiad maneuver, the dataare analyzed in
real time using equation error in the frequency domain,
as described above. The requisite Fourier transforms
for the parameter estimation in Eq. (17) are computed
continuously in real time using Egs. (21), (20), and
(9). Based on the results from this analysis, aslightly
more complex input, the 2-1-1, is designed and
implemented. Input amplitudes and frequencies are
calculated based on results from data produced by the
previous doublet maneuver. Analysis of datafrom all
preceding maneuvers (i.e., the doublet and 2-1-1) is
used as the basis for designing amplitude and
frequency for the dightly more complicated 3-2-1-1
input. Re-designs of the 3-2-1-1 input can continue
based on the most recent data analysis until specific
objectives (such as specified accuracy on any or al
estimated parameters) are met. The sequential increase
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in theinput complexity is designed to correspond with
the increasing accuracy of the model parameters asthe
maneuvers are executed. Total time for each maneuver
includes 2-3 seconds of zero input before each test
input to allow responses to settle to trim valuesin
preparation for each maneuver. Thedday is
randomized uniformly on the interval [2,3] secondsto
enrich theinput spectrum. Thisdelay also alowstime
for the data analysis and input design for the next
maneuver.

Example

For longitudinal aircraft short period dynamics,
the state vector X, input vector u, and output vector y
in Egs. (1) and (3) are defined by

<l d 1ol 23
y=[a q a

System matrices containing the model parameters are;

Dza Z&D Dz5e|:|
A=0 O B=0 0O (24
B\Aa Mqa B\AaeH
O O O O
ol 0 g o0 o
O O O O
C=pg O 1 g D=g 0 g (25
0 v v. O 0 wv. 0
O 9 g0 0°9Qd

The above model assumes a = (], so that o effects
can be subsumed into the Z; and My derivatives.

Parameter Zé includestheinertial term, i.e,,
Za =1+ Zq. The model also assumes asmall trim
angle of attack, sothat Z=-L and a, = a, .

In the first example, perturbation elevator inputs
were applied to aknown linear model to produce
simulated state and output responses. The simulated
aircraft is a conventional F-16° with forward c.g.
position ( 0.2 ©) in straight and level flight at
10,000 ft, trim angle of attack 7 deg, and Mach 0.37.
The simulated states and outputs were corrupted with
20% gaussian random white noise. This made the
signal-to-noise ratio 5-to-1 for each smulated state and
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output measurement. The elevator input was assumed
to be measured without noise, which isaclose
approximation to reality. The true values of the model
parameters used to generate the smulated test data are
givenin column 2 of Table 1. Parameter estimation
was done using equation error in the frequency
domain applied to the two state equations, as described
above, with the Fourier transform computed
recursively.

Theinitial doublet input is shown in Figure 3.
Parameter estimation results based on simulated data
from thisinput are given in column 3 of Table1. In
general, the parameter estimates are approximate, and
the standard errors (in parentheses below each
parameter estimate) are relatively large. Figure4isthe
2-1-1 input design based on the results from the
doublet maneuver data. The abscissain Figure 4
shows that the 2-1-1 maneuver was executed after the
doublet maneuver. Input amplitude was scaled to
produce £2.5 deg of a change from trim, which is
typical for linear model vaidity. Theinput amplitude
scaling was done by keeping track of the maximum
absolute a deviation from trim during the doublet
maneuver, o, (indeg), then scaling the doublet
input amplitude by theratio 2.5/ a ,,,, . Pulse widths
were designed according to the procedure outlined
above. Parameter estimation resultsin column 4 of
Table 1 show that the parameter estimates are
approaching the true values with standard errors
decreasing. A similar trend is shown in column 5 of
Table 1, which contains results based on the data
including the 3-2-1-1 maneuver shown in Figure 5.
The 3-2-1-1 maneuver was designed based on analysis
of datafrom the preceding doublet and 2-1-1
maneuvers. The abscissain Figure 5 shows that the
3-2-1-1 maneuver was executed after the 2-1-1
maneuver.

Figure 6 shows the trend for the Z, parameter
with each identification cycle of maneuver design and
dataanaysis. The estimated parameter values
approach the true value with a decreasing standard
error. Similar plots could be made for the other model
parameters.

The technique was then applied to the full
nonlinear F-16 simulation®, with similar results.
Figure 7 shows the elevator input design for a
simulated flight test of the F-16 with forward c.g.
position ( 0.2 T) in straight and level flight at
20,000 ft, trim angle of attack 20 deg, and
Mach 0.27. Figure 8 shows the angle of attack and
pitch rate response. The same output amplitude
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constraint of +2.5 deg in a was used and was
successfully implemented via the input amplitude
scaling.

Parameter estimation results for this case are
givenin Table 2 using the same format as Table 1.
The "true" linear model parameter values shown in
column 2 of Table 2 were obtained from the nonlinear
simulation using central finite differences and 1%
perturbations on the state and control variables.
Performance of the algorithm was similar to that seen
for the linear case a alower trim angle of attack.
Input amplitudes and pul se widths were adjusted
adaptively and automatically to match the dynamics of
the aircraft at thisflight condition. Figure 9 showsthe
power spectrum of the input. The adaptive input
design resulted in an input with a broad energy band
centered at the "true" natural frequency, even though
the algorithm had no information about the natural
frequency of the system a priori.

The nonlinear simulation, the on-line maneuver
design, and the on-line data analysiswere al
programmed in Matlab and ran on a Sun 200 MHz
HyperSparc (serial processor, running SUnOS 4.1.4)
roughly twice asfast asreal time.

Concluding Remarks

The approach to aircraft system identification
proposed here changes the philosophy of aircraft
dynamic modeling experimentation from designing test
maneuvers based on a priori predictions of the
dynamic characteristics and evaluating the data quality
post-flight, to an in-flight adaptive approach that relies
solely on measured flight data from the dynamical
system to be modeled. The devel oped method
implements the identification cycle of experiment
design, parameter estimation, re-design of the
experiment based on the estimation results, and so on
repeatedly, until desired accuracy measures for the
mode parameters are met. Dynamic effectsthat are
impossible to predict on the ground before the flight
could be accounted for in real time by the automatic
design of the test maneuversin flight. A priori input
design is avoided altogether. The procedure has
reasonable computationa requirements and could be
implemented in flight in real time.

Thiswork used simulation examplesto
demongtrate the in-flight system identification scheme.
The method could be used for dimensional or
non-dimensional parameter estimation, and could also
be used with general nonlinear models, aslong asthe
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model islinear in the parameters. All states and inputs
must be measured, but this should not be aproblem in
the flight test environment for which the method is
intended. A more sophisticated algorithm would be
required for multiple input maneuver design, but
repeated applications of the present method to
individual inputs, one at atime, might proveto be
adequate.

The on-line data analysisin the frequency domain
has the advantage of automatically removing trim
values and measurement biases from the data because
zero frequency is omitted from the Fourier
transformation. In addition, the datais automatically
filtered because only the specific frequencies
corresponding to the dynamic motion of interest are
included in the Fourier transformation.

Ultimately, the algorithm could be packaged as a
subroutine to beincluded in flight control computer
software. Since the algorithm is adaptive and requires
no a priori analysisfor theinput design, it could be
called on to execute appropriate test maneuversfor any
flight condition throughout the flight envelope. This
capability has obvious attraction for flight envelope
expansion, flight control system design validation,
aerodynamic parameter estimation, and simulator
updates.
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Tablel Linear Simulation Results,
ao= 7 deg, hp = 10,000 ft, Mg = 0.37

Maneuver

Parameter  TrUe  poghlet 211 3211
Vdue

7 0600 0791 0629 -0509
(0.054) (0.030) (0.022)
z, 095 1106 0987 0961
(0.046) (0.021) (0.016)
2 0002 00010 -00015 -0.0016
¢ (0.0016) (0.0008) (0.0006)
v, 4300 3508 4118 4193
(0.137) (0.094) (0.043)
v, 1200 1662 1178 1184
(0.116) (0.067)  (0.030)
M, 0090 0104 -0.088 -0.089
e (0.004) (0.002) (0.001)

Table2 Nonlinear Simulation Results,
a, = 20 deg, hy = 20,000 ft, Mg = 0.27

Maneuver

Parameter  TrUe  poghlet 211 3211
Vdue

7 0260 061l 0266 -0274

(0.140) (0.040) (0.029)

z, 094 1103 083% 0911

(0.101) (0.036) (0.028)

2 -00007 0.0023 -00014 00009

¢ (0.0021) (0.0009) (0.0007)

v, 1761 -L613 2004 -1878

(0.108) (0.039) (0.033)

v, 06l 0769 0591 -0614

(0.078) (0.035) (0.032)

00341 -0.0381 -0.0333 -0.0342

% (0.0016) (0.0009) (0.0008)
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Figurel Conventional System Identification Cycle Figure2 In-Flight System Identification

9

American Institute of Aeronautics and Astronautics



15 -16\\\\\\\\\\\\ I e s e
1l A S _ -16.5 ?
d, 05 | 17
0 j
(deg) . I i O 175
1 | (deg) -18
A5 S | -185
-2 It Il - Il L It 11 It 1 ! L L 11 L I} L1 -
0 1 2 3 4 5 =
time (sec) -195 L
1 -20\\\\\\\\"\\\\\\\\\\\_\\\\
Figure 3 Doublet Input ) 5 015 5055 20
time (sec)
2 Figure 7 Nonlinear Simulation Input Sequence
15
1 SRR (SRR SO ISR SO | S N N
O 05 B N N N R -
25
de O 7\\\\\\\\\\\\\\\ \\\\‘\\\\
(deg) 05 L ] L 1
1 a i ‘
15 (deg) 20 ===/3 i
-2 Il Ll Ll 11 L 11 LT Ll 11 Il Il I J - I~ i 7
5 6 7 8 9 10 1 12 I : ]
tlme (Sec) 15\\\\\\\\\\\\\\\ (I T T Y
Flgure 4 2‘1'1 |nput 5 7\ T
q
2 T T 17T T T TT T T 1T TT 1T T T TT 1T TTTT T TT (dps) 0 MV 777777777777777777777777
15 | : |
1 57\11\J\ll\l\\l\li\l\\ll\t
Og 05 S e e - 0 5 0 15 20 25 30
'O-i [ o | B - Figure 8 Nonlinear Simulation Response
15 :
-2 Ll Ll 1] Ll 11 L1l 1 \\i\\\\ |- -]
12 13 14 15 16 17 18 19 20
time (%C) 0.12\\\\\\\ rrrrrrrr 1|y rr 1111 rT
Figure 5 3-2-1-1 Input 0.1
Py 5 0.08 |
_o 5 e-e
: T 0.06

0.6 § 0.04 \\
é 0.02 L Y1 J U | S S _
Za 70 B Oj\fJ e ANAA ]

0 0.5 1 15
o8l % ,,,,,,,,,,,,,,,,, True Value | frequency  (H2)
09 | | | ‘"true" natural frequency’
0 1 2 3 4 ,
Maneuver number Figure 9 Input Power Spectrum
Figure 6 Z, Parameter Estimation
10

American Institute of Aeronautics and Astronautics



